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NOMENCLATURE 

a, b, c, arbitrary coefftcients. equation (I 3); 

C,. specific heat ; 
h, convective heat-transfer coefficient; 
k thermal conductivity: 

ii 
latent heat of fusion: 
arbitrary heat flux at the crust liquid 
interface; 

r. time; 
T. temperature ; 
r,. reference temperature; 
,v, distance measured from the wail crust interface. 

Greek symbols 

thermal diffusivity; 
arbitrary coefficient, equation (15); 
instantaneous frozen crust thickness; 
dimensionless crust thickness, equation (6): 
dimensionless wall-crust interface 
temperature. equation (6): 
dimensionless temperature within the frozen 
crust, equation (6): 
arbitrary coefficient. equation (28); 
inverse Stefan number for freeztng. 
equation (6); 
dimcnsionlcss coordinate. equation (6); 
overall freezing coefficient, equation (21); 
density ; 
dimensionless time. equation (6). 

Subscripts 

au. the upper and lower bounds averaging method ; 

: 
bulk; 

L‘B, 
fusion ; 
lower bound ; 

R. the refined integral heat balance method ; 
4 solidified crust ; 
UB, upper bound ; 
H’, wall. 

lM‘RODL’Cl’IOfS 

Two APPROXIMATE analytical methods are developed for 
solving one-dimensional transient heat-conduction pro- 
blems with phase transformation, where the growth rate of 
a frozen crust (layer) on a cold wall is sought. The first 
method involves a refining of the integral-heat-balance 
(IHB), as introduced by Goodman [I], by carrying out a 
double space integration in a manner similar to that 
suggested by Volkov and Li-Orlov [2]. Since this technique 
[2] was found to yield an appreciable improvement in 

*Present address: EG & G Idaho. Inc., P.O. Box 1625. 
Idaho Falls, ID 83401, U.S.A. 

accuracy of the IHB [I]. as applied to unsteady heat 
conduction problems without phase transformation; such a 
technique is examined here for Stefan-like problems. In 
addition, the solidification bounds averaging method, as 
proposed by Hamil and Bankoff [3], is reexamined by 
arithmetically averaging the upper and lower bounds for the 
solidification interfaceratherthanaveragingthedenominator 
ofanexpr~sionfortheinterfacepositionasformulatedin[3]. 
Such a method has the utility of assessing the frozen layer 
thickness independent ofa knowledgeofthetemperaturefield 
in thecrust; yielding an improved accuracy over the previous 
formulation [3]. particularly for higher values of the Stefan 
number. 

To assess the accuracy of the present formulations, 
analytic expressions for the instantaneous position of the 
solidification front, 6(r) (i.e. frozen layer thickness) are 
presented and compared with the known exact solution for 
the freezing of a stagnant liquid on an isothermal wall [4], 
commonly referred to as the Neumann problem. Such a 
comparison illustrates that the integration techniques 
suggested here for Stefan-like problems otfers an improve- 
ment in accuracy above previous formulations [I, 31. 

ANALYSIS 

The generalized system to be analyzed is illustrated in 
Fig. I. A constant heat flux (Q) is defined at the 
solid-liquid (S-L) interface as well as an arbitrary time 
dependent condrtion at the wall surface (x = 0). For the 
case where a convective heat transfer at the (S-f,) interface 
is involved. Q = h( T6 - T,). 

The transient heat conduction equation within the frozen 
layer is 

(1) 

/ 
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FK. 1. Schematic diagram of transient freezing onto a cold 
wall. 
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Initially the frozen layer thickness is zero, i.e., 

S(O) = 0, (2) 

and the boundary conditions for this frozen layer can be 
written as: 

w. t) = T,(f). (3) 

T,(6,5) = T,. (4) 

To define the instantaneous thickness of the frozen layer, 
s(t), an additional equation must be written for the heat 
balance at this moving boundary; thus, 

Constant but different thermalphysical properties for the 
liquid and solid phases are assumed. 

The analysis can be simplified by introducing the 
following set of transformations: 

5 m & (Dimensionless coordinate), 

Q2 a t ’ = k,2(T’-7$ ’ 
(Dimensionless time), 

AE ’ -------b(r) 
M”,-T,) 

(Dimensionless crust thickness), (6) 

L 

’ = Cp,(Tf- To) 

(Inverse Stefan number for freezing), 

(Dimensionless temperature), 

(Dimensionless interface temperature). 

Equations (l)-(S) then reduce to 

A2 a’& = 8% + 5 dA2 66, 

a7 at* 2 dr iif ’ (7) 

A(r = 0) = 0, (8) 

&CO, r) = 8,(r), (9) 

Q,(l, r) = 1.0. (10) 

Upon integrating equation (7) twice with respect to 
space, making use of the boundary conditions given by 
equations (9~(11). and once with respect to time, knowing 
that A(r = 0) = 0, we obtain the following integral form for 
the dimensionless crust thickness 

i’ [(8,-l)+A]dr 

A&Jo, 

I 
(12) 

r&da-_B(c+l) 
0 

Equation (12) forms the basis upon which the two methods 
suggested here are investigated. 

The refined integral heat balance (RIHB) 
Unlike the integration sequence outlined above, Good- 

man [l] originaliy carried out a heat flow balance on a 
control volume defined by the penetration distance of the 

moving interface. 6(t), where the starting heat equation is 
integrated once with respect to space. The heat fluxes at the 
boundaries were then evaluated from an assumed poly- 
nomial for the temperature field that satisfies the boundary 
conditions of the problem. An expression was then 
obtained for the instantaneous interface velocity, da(t)/dt, 
which upon integration with respect to time gave 6(t). The 
solution obtained in this manner is found to be relatively 
sensitive to small variations in the Kernel function from the 
exactsolution.Theaccuracy howeverisre~tivelyinde~ndent 
of the order of the assumed polynomial. 

Following the integration sequence arguments of Volkov 
and Li-Orlov [Z] (which however were formulated for non- 
linear transient heat-conduction problems. where the 
nonlinearity is due to temperature dependent properties) 
the starting equation for the frozen crust (equation 7) can 
be integrated immediately resulting in equation (12), which 
expresses the moving solidification front as an integral 
function of the boundary conditions and temperature field 
in the frozen layer [i.e. 8,(;. r) which gives T,(x, t)]. 
Assuming a second degree polynomial in space and time for 
the temperature field in the frozen layer of the form: 

0,(&r) =a-h(l-<)+c(l-i’)2, (13) 

0,(&r) can be expressed in terms of the frozen crust 
thickness as: 

8,(&s)= l+$A-ts)(l-2) 

where 

- ;,A-2c)+(l-@,) (l-#, 1 (14) 

1’= _1+[*+~l”2. (15) 

Equation (14) satisfies the boundary conditions given by 
the equations (9)-( 11). From the equation (14), the 
denominator of equation (12) is found to be 

1 
- --++(I-@,)-;(A-2~) 

12 

and the overall expression for A(r) (equation 12) becomes 

(17) 

It is easy to show that equation (17) holds also for 
melting problems, with the sign of L reversed in the 
definition of the dimensionless parameter E. As will be 
shown such an expression is relatively insensitive to small 
variations in the Kernel function from the exact solution 
and results in a more accurate prediction than the original 
formulation of the IHB method [ 11. 

The upper and lower bnunds averaging method 
The bounds averaging method provides a simplified 

expression for the instantaneous frozen layer thickness that 
forms on a cold surface, independent of knowing the 
temperature distribution within the frozen crust. In the 
present analysis this is accomplished by taking the 
arithmetic average of the upper and lower bounds of the 
moving interface position, where the dimensionless tem- 
perature (8,) in the denominator of equation (12) is taken 
as equat to 1 (corresponding to a flat temperature profile 
across the frozen layer equal to the fusion temperature) and 
8, = 8, (corresponding to a flat temperature profile across 
the frozen layer equal to the wall tem~rature), respectively. 
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For 0, Q 8,~ 1, the upper and lower bounds of the 
integral in the denominator of equation (12) are 

I 

I 
te, ,< rl%dtl $ t. (1’3) 

0 
Substituting the above inequality into equation (12), 

expressions for the upper and lower bounds of A2 are 
obtained as 

i 
f 

(I-%,-A)ds 1 ‘(1 -%,+A)ds 

2Jo <its<2 Jo 
(l--%,+&f 

‘ (19) 
t: 

Up to this point, the solution technique, with respect to 
the averaging method, is the same as developed by Hamill 
and Bankoff [3]. In their development, an expression for the 
moving interface position, A(T), is obtained by averaging only 
the denominators of the upper and lower bounds given in 
equation (19). However, A(t) can also be obtained by taking 
the arithmetic average of the entire expression, given in 
equation (19), for the upper and lower bounds of the moving 
interface position. Thus, the dimensionless crust thickness can 
be expressed as 

A(T) = Z;~(T)(T)“~, (20) 

where 

1(r) = the overall freezing coefficient 

= f[&a+&J. (21) 

The lower bound freezing coefficient, I,,, being 

I,, = S;(l -%r--A.)dt 
1 
Ii2 

27(1--e,+&) ’ (22) 

and the upper bound freezing coefficient, A,,, being 

a 
“B 

Rearranging equation (20), we obtain 

A’(T) = 
(i-%,+2&)+2[&(1 -%,+&)I”2 

2&(1 --el+E) 

(23) 

x 
s 

‘(l-%,-Afdz. (24) 
0 

Equation (24) gives an implicit expression for the 
instantaneous frozen layer thickness, A(Z), in terms of the 
boundary conditions at the wall-frozen layer and frozen 
layer-liquid interfaces. 

As can be seen from equation (21), the freezing coefficient 
d(z), given by this averaging method, is strongly dependent 
on Stefan number for freezing (I/E) and the boundary 
conditions at the interfaces but insensitive to the tempera- 
ture distribution within the frozen layer. This indicates that 

- Integral hoot bobw 

--- Hamill and Bonkotf 

1 I I 
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Freezing constant, X 

5 

FIG. 2. The freezing constant, I, of a stagnant liquid at its 
fusion temperature onto an isothermal cold wall as given 

by the exact and the approximate soiutions. 

problems having constant boundary conditions, either in 
terms of temperature or heat flux, should result in an 
accurate prediction using the averaging techniiue. 

To assess the accuracy of both the refined integral heat 
balance and bounds averaging method, as developed here, a 
comparison is made with the known exact solution to the 
classical Neumann problem. 

ASSESSMENT OF ACCURACY 

Considering the freezing of a stagnant liquid at its fusion 
temperature [i.e. Q being zero] onto an isothermal cold wail 
[i.e. T,(O, t) = T,],thetwomethodsdevelopedinthepreceding 
section yield the following expressions. 

(a) The refined integral heat balance method 
For e,(7) = 0, the refined integral heat balance method 

(equation 17) yields the following expression for the 
instantaneous frozen layer thickness 

A(t) = 2d,(~)“~, (25) 

Table 1. Freezing constant, d, for a warm liquid at its fusion temperature on an isothermal 
wall 

Method Freezing constant L 

I. Integral heat balance [l], (INB) 

II. Refined integral heat balance (RIHB) 

III. Upper-lower bounds averaging 

IV. Hamill and Bankoff [3] 

3[1-(1+j#‘2+/.l] “* 

5+(1+/#‘2+/l 1 
112 

1 

3 

1+&[5l-(1+&‘2] 1 

(1+2&)+2[E(l+ &)I”2 1’2 

8s(l+s) 
112 

V. Exact solution [4] le@erfR = [E(X)““]- 
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where 
112 

’ 

Yk = -l+(l+y)i’z, (27) 

/l = 2/E. (28) 

(b) The upper and lower bounds averaging method 
By substituting O,(T) = 0 [i.e. T,(x = 0,t) = T,] into 

equation (24) and noting that for Q = 0, A(T) on the RHS 
of equation (24) is zero, while A’(r)/s = 6*(t)/c(,t. The 
averaging method thus gives the following expression for 
the instantaneous frozen layer thickness 

A(r) = 2&,(T)“‘, (29) 

where 

~ (1+2s)+2E(l+E) 1’2 = 
a” 

I 8~(1+s) 
(30) 

A listing is shown in Table 1 of the resultant expressions 
for the freezing constant, 1, as obtained by various 
approximate methods and the exact solution, while a plot 
of L vs the Stefan number is presented in Fig. 2. It is noted 
that the integration of the heat-conduction equation twice 
with respect to space, prior to assuming a polynomial for 
the temperature distribution, yields a significant improve- 
ment over the integral heat balance method as applied by 
Goodman [l] for freezing on an isothermal wall. Such 
results are in agreement with that of Megerlin [S], who has 
noted that Goodman’s method [l] does not yield very 
accurate results in problems of freezing and melting. The 
refined integral heat balance predictions are accurate to 
within about 0.3% of the exact solution while the integral 
heat balance is accurate to within about 6%. 

For the problem at hand, the averaging method 
introduced here yields an etror no greater than 2%. 
However, the advantage of this method is that an accurate 
prediction of the freezing constant can be obtained 
independent of a knowledge of the temperature distribution 
within the frozen layer. It is also noted that averaging the 
denominator of the upper and lower bounds, as introduced 
by Hamill and Bank05 [3], results in a somewhat less 
accurate prediction of the freezing constant in this case, 
especially for higher values of the Stefan number. 

As indicated below the methods developed here can be 
easily applied to other problems, for example the case 
where the wall temuerature is a time dependent function, an 
illustrative example being 

6,(r) = a e”‘, (31) 

where 4 is a constant either positive or negative. 
The refined integral heat balance gives 

A(7) = &(r)(7)"', (32) 

where 

b(7) = 6e+(l--er)+~ac 

The averaging method in this case results in 

A(7) = 2&,(~)(r)“~, 

(33) 

(34) 

Shorter Communications 

where 

h"(7) = 

\ 
I_ 

8~(1--~J,+E) ‘/ 

(35) 

Other solutions using the method developed in this work 
can be found in [6]. 

CONCLUSION 

The two methods presented in this paper provide an 
accurate prediction of the instantaneous position of the 
moving boundary as applied to one-dimensional melting 
and freezing problems. The methods developed can be 
applied to various problems involving a change-of-phase, 
with or without a convective boundary condition at the 
moving front. The important feature of these methods is 
that the instantaneous frozen layer thickness is given in an 
integral form which is relatively insensitive to small 
variations in the Kernel function from the exact solution. 

It is noted that the double integration of the heat 
conduction equation twice with respect to space or the 
arithmetic averaging of the upper and lower bounds of the 
freezing (or melting) front position provides an accurate 
prediction concerning the instantaneous position of the 
moving boundary. However, the refined integral heat 
balance technique gives the more accurate and simplified 
solution to the problems presented compared to the 
solutions obtained by the bounds averaging method. 
Results of both methods, however, are in good agreement 
with the known exact solution to the Neumann problem 
and illustrate that such methods offer improvement in 
accuracy above known approximate analytical methods of 
other investigators [l, 33:Thus. future work might include 
application of such methods to the more difficult problems 
of simultaneous melting and freezing of coupled multimedia 
and finite geometry systems. 

Acknowledgements-This work was supported by the U.S. 
Nuclear Regulatory Commission, Division of Fast Reactor 
Safety Research. 

REFERENCES 

1. T. R. Goodman, The heat-balance intearal and its 
application to problems involving a change of phase, J. 
Heat Transfer 80(2), 335-342 (1958). 

2. V. N. Volkov and V. K. Li-Orlov, A refinement of the 
integral method in solving the heat conduction equation, 
Heat Transfk. Soviet Res. 2(2). 41-47 11970). 

3. T. D. Hamill and S. d. “Bankotf, Maximum and 
minimum bounds on freezing-melting rates with time- 
dependent boundary conditions, A.I.Ch.E. Journal 
9(6), 741-744 (1963). 

4. H. S. Carslaw and J. C. Jaeger, Conduction of Heat in 
Solids, 2nd edn., Chapter 11. Clarendon Press, Oxford 
(1959). 

5. F. Megerlin, Geometrish Eindimensionable Warme- 
leitung Beim Schmelzen UND Erstarren, Diss. TH 
Aachen (1965). 

6. M. S. El-Genk, Improvements to the solution of Stefan- 
like freezing and melting problems, with application to 

of New Mexico, Albuquerque NM (1978). 
LMFBR safety analysis, Ph.D. Dissertation, University 


